Semantic Networks

فهرست عناوین اصلی در این پاورپوینت

فهرست عناوین اصلی در این پاورپوینت

● Chapter 13
● Chapter Goals
● Thinking Machines
● The Turing Test
● Knowledge Representation
● Semantic Networks
● Search Trees
● Expert Systems
● Artificial Neural Network
● Neural Network
● Artificial Neural Networks
● Natural Language Processing
● Voice Synthesis
● Voice Recognition
● Natural Language Comprehension
● Robotics
● Subsumption Architecture
● Robots
● Ethical Issues
● Who am I?
● Do you know?

نوع زبان: انگلیسی حجم: 2.74 مگا بایت
نوع فایل: اسلاید پاورپوینت تعداد اسلایدها: 55 صفحه
سطح مطلب: نامشخص پسوند فایل: ppt
گروه موضوعی: زمان استخراج مطلب: 2019/06/07 12:32:05

لینک دانلود رایگان لینک دانلود کمکی

اسلایدهای پاورپوینت مرتبط در پایین صفحه

عبارات مهم استفاده شده در این مطلب

عبارات مهم استفاده شده در این مطلب

system, network, search, tree, –, represent, weed, neural, expert, lawn, knowledge, test,

توجه: این مطلب در تاریخ 2019/06/07 12:32:05 به صورت خودکار از فضای وب آشکار توسط موتور جستجوی پاورپوینت جمع آوری شده است و در صورت اعلام عدم رضایت تهیه کننده ی آن، طبق قوانین سایت از روی وب گاه حذف خواهد شد. این مطلب از وب سایت زیر استخراج شده است و مسئولیت انتشار آن با منبع اصلی است.

https://www.nr.edu/csc200/ppts/Chapter13.ppt

در صورتی که محتوای فایل ارائه شده با عنوان مطلب سازگار نبود یا مطلب مذکور خلاف قوانین کشور بود لطفا در بخش دیدگاه (در پایین صفحه) به ما اطلاع دهید تا بعد از بررسی در کوتاه ترین زمان نسبت به حدف با اصلاح آن اقدام نماییم. جهت جستجوی پاورپوینت های بیشتر بر روی اینجا کلیک کنید.

عبارات پرتکرار و مهم در این اسلاید عبارتند از: system, network, search, tree, –, represent, weed, neural, expert, lawn, knowledge, test,

مشاهده محتوای متنیِ این اسلاید ppt

مشاهده محتوای متنیِ این اسلاید ppt

chapter ۱۳ artificial intelligence chapter goals distinguish between the types of problems that humans do best and those that computers do best explain the turing test define what is meant by knowledge representation and demonstrate how knowledge is represented in a semantic network chapter goals develop a search tree for simple scenarios explain the processing of an expert system explain the processing of biological and artificial neural networks list the various aspects of natural language processing explain the types of ambiguities in natural language comprehension thinking machines can you list the items in this picture thinking machines can you count the distribution of letters in a book add a thousand ۴ digit numbers match finger prints search a list of a million values for duplicates cover image sergey nivens shutterstock inc. thinking machines can you list the items in this picture can you count the distribution of letters in a book add a thousand۴ digit numbers match finger prints search a list of a million values for duplicates humans do best computers do best thinking machines artificial intelligence ai the study of computer systems that attempt to model and apply the intelligence of the human mind for example writing a program to pick out objects in a picture the turing test turing test a test to empirically determine whether a computer has achieved intelligence alan turing an english mathematician who wrote a landmark paper in ۱۹۵ that asked the question can machines think he proposed a test to answer the question how will we know when we’ve succeeded the turing test the turing test weak equivalence two systems human and computer are equivalent in results output but they do not arrive at those results in the same way strong equivalence two systems human and computer use the same internal processes to produce results the turing test loebner prize the first formal instantiation of the turing test held annually chatbots a program designed to carry on a conversation with a human user has it been won yet knowledge representation how can we represent knowledge we need to create a logical view of the data based on how we want to process it natural language is very descriptive but does not lend itself to efficient processing semantic networks and search trees are promising techniques for representing knowledge semantic networks semantic network a knowledge representation technique that focuses on the relationships between objects a directed graph is used to represent a semantic network or net remember directed graphs semantic networks semantic networks what questions can you ask about the data in figure ۱۳.۳ previous slide what questions can you not ask semantic networks network design the objects in the network represent the objects in the real world that we are representing the relationships that we represent are based on the real world questions that we would like to ask that is the types of relationships represented determine which questions are easily answered which are more difficult to answer and which cannot be answered search trees search tree a structure that represents alternatives in adversarial situations such as game playing the paths down a search tree represent a series of decisions made by the players remember trees search trees search trees search tree analysis can be applied to other more complicated games such as chess however full analysis of the chess search tree would take more than your lifetime to determine the first move because these trees are so large only a fraction of the tree can be analyzed in a reasonable time limit even with modern computing power therefore we must find a way to prune the tree search trees techniques for pruning search space depth first a technique that involves searching down the paths of a tree prior to searching across levels breadth first a technique that involves searching across levels of a tree prior to searching down specific paths breadth first tends to yield the best results search trees expert systems knowledge based system software that uses a specific set of information from which it extracts and processes particular pieces expert system a software system based on the knowledge of human experts it is a rule based system a software system based on a set of if then rules inference engine the software that processes rules to draw conclusions expert systems named abbreviations that represent conclusions none—apply no treatment at this time turf—apply a turf building treatment weed—apply a weed killing treatment bug—apply a bug killing treatment feed—apply a basic fertilizer treatment weedfeed—apply a weed killing and fertilizer combination treatment expert systems boolean variables needed to represent state of the lawn bare—the lawn has large bare areas sparse—the lawn is generally thin weeds—the lawn contains many weeds bugs—the lawn shows evidence of bugs expert systems data that is available last—the date of the last lawn treatment current—current date season—the current season now we can formulate some rules for our gardening expert system. rules take the form of if then statements expert systems some rules if current – last ۳ then none if season winter then not bugs if bare then turf if sparse and not weeds then feed if bugs and not sparse then bug if weeds and not sparse then weed if weeds and sparse then weedfeed expert systems an execution of our inference engine system does the lawn have large bare areas user no system does the lawn show evidence of bugs user no system is the lawn generally thin user yes system does the lawn contain significant weeds user yes system you should apply a weed killing and fertilizer combination treatment. artificial neural network artificial neural networks a computer representation of knowledge that attempts to mimic the neural networks of the human body yes but what is a human neural network neural network replace with new figure neural network neuron a single cell that conducts a chemically based electronic signal at any point in time a neuron is in either an excited state or an inhibited state excited state neuron conducts a strong signal inhibited state neuron conducts a weak signal neural network pathway a series of connected neurons dendrites input tentacles axon primary output tentacle synapse space between axon and a dendrite neural network chemical composition of a synapse tempers the strength of its input signal a neuron accepts many input signals each weighted by corresponding synapse neural network the pathways …

کلمات کلیدی پرکاربرد در این اسلاید پاورپوینت: system, network, search, tree, –, represent, weed, neural, expert, lawn, knowledge, test,

این فایل پاورپوینت شامل 55 اسلاید و به زبان انگلیسی و حجم آن 2.74 مگا بایت است. نوع قالب فایل ppt بوده که با این لینک قابل دانلود است. این مطلب برگرفته از سایت زیر است و مسئولیت انتشار آن با منبع اصلی می باشد که در تاریخ 2019/06/07 12:32:05 استخراج شده است.

https://www.nr.edu/csc200/ppts/Chapter13.ppt

  • جهت آموزش های پاورپوینت بر روی اینجا کلیک کنید.
  • جهت دانلود رایگان قالب های حرفه ای پاورپوینت بر روی اینجا کلیک کنید.

رفتن به مشاهده اسلاید در بالای صفحه


پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *