Knights and Knaves

فهرست عناوین اصلی در این پاورپوینت

فهرست عناوین اصلی در این پاورپوینت

● Logic Puzzles
● What are logic puzzles?
● The Master of Logic Puzzles
● Knights and Knaves
● Knight and Knave Problem
● Knight, Knave and Spy Problem
from Alice in Puzzle-Land
● Knight, Knave and Spy Problem cont.
from Alice in Puzzle-Land
● Multiple Choice Help
● False Statement
● Conclusion
● Pop Quiz!

نوع زبان: انگلیسی حجم: 0.36 مگا بایت
نوع فایل: اسلاید پاورپوینت تعداد اسلایدها: 14 صفحه
سطح مطلب: نامشخص پسوند فایل: ppt
گروه موضوعی: زمان استخراج مطلب: 2019/05/17 03:13:53

لینک دانلود رایگان لینک دانلود کمکی

اسلایدهای پاورپوینت مرتبط در پایین صفحه

عبارات مهم استفاده شده در این مطلب

عبارات مهم استفاده شده در این مطلب

knight, b, knave, ., ⇔, ¬, say, p, c, answer, r, t,

توجه: این مطلب در تاریخ 2019/05/17 03:13:53 به صورت خودکار از فضای وب آشکار توسط موتور جستجوی پاورپوینت جمع آوری شده است و در صورت اعلام عدم رضایت تهیه کننده ی آن، طبق قوانین سایت از روی وب گاه حذف خواهد شد. این مطلب از وب سایت زیر استخراج شده است و مسئولیت انتشار آن با منبع اصلی است.

https://www.cse.unr.edu/~bebis/CS365/StudentPresentations/LogicPuzzles.ppt

در صورتی که محتوای فایل ارائه شده با عنوان مطلب سازگار نبود یا مطلب مذکور خلاف قوانین کشور بود لطفا در بخش دیدگاه (در پایین صفحه) به ما اطلاع دهید تا بعد از بررسی در کوتاه ترین زمان نسبت به حدف با اصلاح آن اقدام نماییم. جهت جستجوی پاورپوینت های بیشتر بر روی اینجا کلیک کنید.

عبارات پرتکرار و مهم در این اسلاید عبارتند از: knight, b, knave, ., ⇔, ¬, say, p, c, answer, r, t,

مشاهده محتوای متنیِ این اسلاید ppt

مشاهده محتوای متنیِ این اسلاید ppt

logic puzzles miran kim ben seelbinder matthew sgambati matthew what are logic puzzles a puzzle deriving from the mathematics field of deduction produced by charles lutwidge dodgson a puzzle that can be solved using logical reasoning it helps work with rules of logic and or xor etc. programs that carry out logical reasoning use these puzzles to illustrate capabilities matthew this branch was produced by charles lutwidge dodgson who is better known under his pseudonym lewis carroll the author of alice s adventures in wonderland quote is from wikipedia is we need to cite it examples of and or xor will be later on the master of logic puzzles high school dropout who got a ph.d. in logic at princeton wrote many books on logic puzzles such as alice in puzzle land and to mock a mockingbird most famous for his knights and knaves problem raymond smullyan matthew raymond smullyan high school dropout with a ph.d. talk about alice in puzzle land lead into knights and knaves knights and knaves encounter two people knights always tell the truth knaves always lie figure out whether each person is a knight or a knave from their statements example a says at least one of us is a knave and b says nothing i don’t lie neither do i matthew pretty much all on the slide knight and knave problem a says at least one of us is a knave and b says nothing. p x x is a knight ¬p x x is a knave suppose a is a knave. ¬p a ⇔ t what a says must be false ¬p a ∨ ¬p b ⇔ f check ¬p a ∨ ¬p b ⇔ t ∨ ¬p b ⇔ t a is a knight and what a says must be true. p a ¬p a ∨ ¬p b ∴¬p b impossible answer a is a knight. b is a knave. matthew if a is lying then neither of them can be knaves negating his own statement disjunctive syllogism to determine the final solution knight and knave problem a says the two of us are both knight and b says a is a knave. p x x is a knight ¬p x x is a knave suppose a is a knight. p a ⇔ t what a says must be true p a ∧p b ⇔ t p b ⇔ t however b says ¬p a ⇔ t p a ⇔ f a is a knave and what a says is false. ¬p a ⇔ t p a ∧p b ⇔ f ∧p b ⇔ f b is a knight because his statement a is a knave is true. impossible answer a is a knave. b is a knight. matthew if both are knights then what b says must be false making what a says false therefore a must be lying and b is telling the truth knight and knave problem a says i am a knave or b is a knight and b says nothing. a is a knight b is a knight both a and b say i am a knight. cannot determine the answer a says we are both knaves and b says nothing. a is a knave b is a knight a says b is a knight and b says the two of us are opposite types. a is a knave b is a knave miran go over questions and answers give out prizes knight knave and spy problem from alice in puzzle land added rule spy can lie or tell the truth. there is one spy one knight and one knave. a says that c is a knave. b says that a is a knight. c says i am the spy. which one is the spy which one is the knight which one is the knave knight x x is a knight knave x x is a knave spy x x is a spy from c’s statement c can’t be a knight because a knight never lie about his identity. therefore c is either a knave or a spy. miran discuss the origins of the problem discuss the difference from the knights and knaves problem knight knave and spy problem cont. from alice in puzzle land suppose c is a spy. ¬knight c ∧ ¬knave c ∧ spy c ⇔ t ¬knave c ⇔ t simplification knave c ⇔f what a says is false so a is knave. ¬knight a ∧ knave a ∧ ¬ spy a ⇔ t ¬knight a ⇔ t simplification b must be a knight and what b says must be true. check knight a ⇔ t ¬knight a ⇔ f impossible ∴ c isn’t a spy. there is one spy one knight and one knave. a says that c is a knave. b says that a is a knight. c says i am the spy. answer c is a knave. a is telling the truth so a is a knight. b is a spy. miran explain the example  multiple choice help you encounter a problem on an exam with only answer choices the question has been omitted. here are the answers answer a answer a or answer b answer b or answer c we may determine the correct answer using discrete math r x answer x is right the correct answer must be the only one suppose a correct r a true we have the following answers r a ⇔ t ⇔ true r a ∨ ¬r b ⇔ t ∨ f ⇔ true ¬r b ∨ ¬r c ⇔ f ∨ f ⇔ false knowing this may only have one correct answer we can determine that this answer is not right. ben explain how in order to have only one answer correct it must be a xor explain how i must try each possibility multiple choice help suppose r b true ¬r a ⇔ f ⇔ false ¬r a ∨ r b ⇔ f ∨ t ⇔ true r b ∨ ¬r c ⇔ t ∨ f ⇔ true suppose r c true ¬r a ⇔ f ⇔ false ¬r a ∨ ¬r b ⇔ f ∨ f ⇔ false ¬r b ∨ r c ⇔ f ∨ t ⇔ true comparing each solution we know that the correct answer must be c. we didn’t have to look at the …

کلمات کلیدی پرکاربرد در این اسلاید پاورپوینت: knight, b, knave, ., ⇔, ¬, say, p, c, answer, r, t,

این فایل پاورپوینت شامل 14 اسلاید و به زبان انگلیسی و حجم آن 0.36 مگا بایت است. نوع قالب فایل ppt بوده که با این لینک قابل دانلود است. این مطلب برگرفته از سایت زیر است و مسئولیت انتشار آن با منبع اصلی می باشد که در تاریخ 2019/05/17 03:13:53 استخراج شده است.

https://www.cse.unr.edu/~bebis/CS365/StudentPresentations/LogicPuzzles.ppt

  • جهت آموزش های پاورپوینت بر روی اینجا کلیک کنید.
  • جهت دانلود رایگان قالب های حرفه ای پاورپوینت بر روی اینجا کلیک کنید.

رفتن به مشاهده اسلاید در بالای صفحه


پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *